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EFFECT OF VISCOSITY ON NUCLEATION OF BUBBLES

IN DECOMPRESSED WATER-SATURATED MAGMA

UDC 532.526.5+551.213.3S. I. Lezhnin, N. A. Pribaturin, and A. L. Sorokin

Based on the classical nucleation theory, the effect of viscosity on bubble nucleation in water-saturated
magma has been studied. A comparison with experimental data proves that viscosity has a pronounced
effect on the rate of homogeneous nucleation in magma.

Key words: homogeneous nucleation, supersaturation, bubbles, viscosity, magma.

The volcanic-eruption pattern is largely determined by nucleation and growth of gas bubbles dissolved in
magma, which are predominantly formed by H2O and CO2 [1]. Magma-degassing dynamics depends on the number
of bubbles formed; the latter can be predicted using theoretical dependences for the nucleation rate [2, 3]. Yet,
these dependences ignore the effect of magma viscosity, which is known to be quite appreciable [4].

The objective of the present work was to predict the rate of homogeneous nucleation in water-saturated
magma on the basis of the classical nucleation theory [5] with allowance for viscosity. For the case of pure-liquid
boiling, the rate of homogeneous nucleation was calculated with allowance for viscosity and thermal conductivity
by Kagan [6]. The method proposed in [6] was used in the present study; to facilitate the comparison, we use the
same notation.

Let us briefly recall the main postulates of the classical nucleation theory [5]. We assume that the nuclei of
the new phase are macroscopic and their size distribution function f(t, r) can be found from the following equation
of the Fokker–Planck type:
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Here A is the growth rate of the nuclei, B is the diffusivity in the size space, and J is the nucleation rate. To
calculate the growth rate of supercritical nuclei, we use the solution of an appropriate continual (heat-conduction
or diffusion) problem. In constructing the steady-state solution of Eq. (1), the boundary condition at r → 0 is
f(r) = f0(r), where f0(r) is the size distribution function of nuclei given by the thermodynamic fluctuation theory.
The boundary condition at r →∞ is J = const. It follows from these conditions that [5]
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where rk is the critical-nucleus radius, σ is the surface tension at the interface between the phases, k is the Boltzmann
constant, and T is the temperature in the medium.

Following the above-described approach, Toramaru [2] derived the following expression for the degassing
conditions of water-saturated magma:
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Here C0 is the initial concentration of water in magma, Dc is the diffusivity, P0 is the initial pressure at the
concentration C0, ∆P is the pressure difference corresponding to rk, and Vm is the molecular volume of water in
the melt. In deriving Eq. (2), the condition of mechanical equilibrium for transcritical nuclei p = p0 + 2σ/r was
assumed to be valid; this made it possible to find A by solving the diffusion problem (p is the vapor pressure in a
bubble of radius r and p0 is the pressure in the melt).

Within the framework of the classical nucleation theory, the pre-exponential factor cannot be determined
uniquely [5]. Based on the model of “molecule transition frequency”, Hurwitz and Navon [3] derived the following
expression for the nucleation rate:
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Here n0 is the concentration of (undissociated) water molecules and a0 is the distance between water molecules in
the melt. A comparison of dependences (2) and (3) in [7] showed that the preexponential factors in the region of
intense nucleation differ within one order of magnitude. Note that the magma viscosity does not explicitly enter
dependences (2) and (3).

Let us pass now to solving the problem posed. Instead of Eq. (1), the equivalent equation
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was used in [6] for the distribution function fn of nuclei over the number n of molecules normalized by the condition
∞∫
1

fn dn = Nb (Nb is the number of nuclei per unit volume). Here and below, the dot denotes the derivative with

respect to time. The scheme of [5] applied to constructing the solution of this equation yields the expression
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Using the Hertz–Knudsen formula, we write the expression for the rate of change of the number of molecules in a
gas bubble

ṅ = πβutr
2[pr − p]/(kT ), (5)

where pr is the equilibrium vapor pressure at the bubble surface, ut =
√

8kT/(πm) is the average thermal velocity of
vapor molecules, and β is the condensation coefficient. The diffusion process in the vicinity of the bubble is governed
by the solution of the steady-state equation ∆C = 0 with the boundary conditions C(r) = Cr and C(∞) = Cm;
this solution has the form

C(r̄) = Cm + (Cr − Cm)r/r̄

(r̄ is the distance from the bubble center). This solution yields
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At local thermodynamic equilibrium on the bubble surface, the relation between the pressure pr and the concen-
tration of water molecules is described by the Henry law pr = AC2

r . We substitute these expressions into Eq.(5) to
obtain
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A fairly accurate approximation for transcritical bubbles is
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After transformations, we obtain
ṅ = πβutr

2[AC2
m − p]/(kT (1 + δ)), (6)

where δ = βutrACm/(2DckT ). In calculating the derivative (dṅ/dr)k, Kagan [6] used the Rayleigh–Lamb equation

ρrr̈ + 3(ṙ)2/2 = p− p0 − 2σ/r − 4ηṙ/r,
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which describes the dynamics of a spherical bubble in a viscous liquid. We express the gas pressure in the bubble
from this equation, neglect the term 3(ṙ)2/2 (ṙ = 0 for r = rk) and use the relation r̈ = ṙ dṙ/dr; then, the insertion
of the resultant expression into (6) yields
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We calculate the derivative dṅ/dr by neglecting the derivative of the first multiplier and all terms that contain (ṙ)2.
After cumbersome yet simple transformations, we obtain the following expression for r = rk:(dṅ
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We neglect imperfection of vapor in the bubble and write
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We differentiate this expression as previously and calculate the derivative at r = rk to obtain(dṅ
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Equating the right sides of Eqs.(7) and (8) yields the following cubic equation for dṙ/dr:
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dr

)3

k
+

(4η

3
+

βutρrk

4(1 + δk)

)(dṙ
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By introducing the dimensionless variables
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We assume that ω′/ω2 � 1 (which is equivalent to neglecting the inertial terms) and obtain the equation
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We substitute the positive solution of this equation into (7) and then insert the result obtained into Eq. (4); this
yields the following expression for the nucleation rate:
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Apart from viscosity, diffusivity, and the constant in the Henry law, the preexponent in (9) contains the condensation
coefficient to be predicted by methods of the kinetic theory of gases. The resultant dependence calculated for
different values of β is compared with dependence (2) in Fig. 1. The calculations were performed for the following
values of physical parameters: C0 = 3.45 · 1027 m−3, P0 = 200 MPa, T = 1173 K, Dc = 2.3 · 10−11 m2/sec (these
values were chosen to be in agreement with the experimental conditions of [8]), σ = 0.08 N/m, and η = 10−3 Pa · sec.
Variation of β from 1 to 10−5 weakly affects the value of the nucleation rate, and dependences (2) and (9) calculated
with β = 10−6 are almost coincident.

Generally, the condensation coefficient depends on the surface curvature, degree of supersaturation, etc. All
the quantities in (9) are calculated for the critical nucleus. Assuming that dependences (2) and (9) differ insignifi-
cantly at low viscosity and that the condition of mechanical equilibrium is approximately fulfilled for transcritical
bubbles (as in [2]), we determine the value of β from the condition of identical diffusion and kinetic fluxes of
molecules at the surface of the transcritical bubble:

ṅ = πβutr
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Fig. 1. Nucleation rate versus supersaturation pressure for different values of β:
curves 1–3 refer to the calculation by formula (9) for β = 1 (1), 10−5 (2), and
10−6 (3); curve 4 refers to the calculation by formula (2).

As r → rk, we have Cr → Cm and p → pr(Cm). With due allowance for this, we obtain the following expression
for the condensation coefficient:
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With this choice of β, the formulas for the dimensionless parameters and the dependence obtained acquire the form
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and the condition ω′/ω2 � 1 reduces to the condition ω′/ω2 = 4ρσrk/(27η2) � 1, which is satisfied with high
accuracy for typical values of physical parameters of magma. Thus, in calculating the preexponential factor, we
take into account the contribution of pressure and viscous forces into the bubble dynamics, whereas the condition
of mechanical equilibrium for the bubble is used only in estimating the condensation coefficient.

Dependences (10) and (2) calculated for different values of viscosity are compared in Fig. 2. The calculations
were performed for the following values of physical parameters: C0 = 3.45 · 1027 m−3, P0 = 200 MPa, T = 1173 K,
Dc = 2.3 · 10−11 m2/sec, and σ = 0.08 N/m. The dependences almost coincide for low viscosity, whereas the
nucleation rate at η = 104 Pa · sec decreases by one or two orders, depending on the actual degree of supersaturation.
The effect of viscosity is especially pronounced for η = 106 Pa · sec.

The mechanism of homogeneous nucleation of gas bubbles in magma was experimentally studied in [8, 9] at
high pressure and temperatures typical of conditions in volcano channels. The experiments in [9] were conducted at
an initial pressure of 200 MPa and initial temperature of 1073 K. In those experiments, however, the homogeneous
nucleation regime was observed only in samples that contained (in addition to H2O) a substantial amount of CO2.
The homogeneous nucleation regime in water-saturated samples was observed for the first time in [8], in experiments
performed at a higher temperature (1173 K).

The values calculated by formula (10) for different values of surface tension are compared with the experi-
mental data of [8] in Fig. 3, which also shows the experimental data corrected by the dependence for the nucleation
duration reported in [10]. The nucleation rate was determined in [8] from the total decompression time. The time
interval with intense decompression, however, is short as compared to the total decompression time. The nucleation
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Fig. 2. Nucleation rate versus supersaturation pressure: curve 1 refers to the calculation by for-
mula (2) and curves 2–4 refer to the calculation by formula (10) for η = 102 (2), 104 (3), and
106 Pa · sec (4).
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Fig. 3. Nucleation rate versus supersaturation pressure for different values of surface tension: curves
1–3 refer to the calculation by formula (10) for σ = 0.07 (1), 0.08 (2), and 0.09 N/m (3); points 4
and 5 refer to the experimental data of [9] and corrected data of [9], respectively.

rate measured in [8] was corrected by dividing the number concentration of bubbles by the nucleation duration
calculated by the dependence derived in [10]. As it follows from Fig. 3, the corrected nucleation rate turns out to
be two to three orders of magnitude higher. In performing the comparison, it should be taken into account that
the experimental data obtained at moderate decompression rates (0.025 MPa/sec) could be affected by heteroge-
neous nucleation on the capsule walls. This circumstance was emphasized in [8], where the experimental data were
processed with allowance for the residual water content in the samples. The results obtained for a decompression
rate of 8.5 MPa/sec involve no such inaccuracies. With these remarks taken into account, it can be concluded that
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Fig. 4. Nucleation rate versus supersaturation pressure calculated by for-
mula (10) for σ = 0.08 N/m: curve 1 refers to T = 1173 K and C = 5.2% [8]
and curve 2 refers to T = 1073 K and C = 4.6% [9].

TABLE 1

Sample dP , MPa J1, m3/sec J2, m3/sec

VGD6 160 6.5 · 1011 2.18 · 108

VGD10 178 1.2 · 1016 1.12 · 1013

VGD13 190 1.9 · 1018 2.81 · 1015

σ = 0.08 N/m. This value is close to σ = 0.076 N/m for which good agreement between numerical results and the
experimental data of [3] was obtained in [11]. The difference of σ = 0.08 N/m from the value σ = 0.10–0.11 N/m
obtained in [8] with the use of Eq.(3) results from taking account of viscosity in relation (10).

The difference between the experimental results in [8] and [9] can be considered as an indication pointing
to the effect of viscosity on the nucleation rate. The temperatures in those experiments differed by 100 K. This
difference seem to be the reason for the fact that no homogeneous nucleation (in samples without CO2) was observed
in [9] for close initial values of water content and pressure. A 1-% decrease in mass concentration and a 100-K
decrease in temperature in this range of parameters increase viscosity by an order of magnitude [4]. The nucleation
rates calculated for σ = 0.08 N/m by formula (10) with due allowance for the difference in pressure and water content
differ from each other by five to six orders of magnitude (Fig. 4). The nucleation rates J1 and J2 calculated by
formulas (3) and (10), respectively, for typical experimental conditions of [9] are summarized in Table 1 (here, dP is
the decrease in pressure experimentally observed in the indicated sample). The value of J1 was calculated for
σ = 0.105 N/m [this value of σ was used in [9] to perform estimates by Eq. (3)], whereas the value of J2 was
calculated for σ = 0.08 N/m. Under the indicated supersaturation, the value of J2 is three orders of magnitude
lower than J1 even for much lower surface tension; this difference results from the effect of viscosity. Nonetheless,
the estimated nucleation rates are much higher than the sensitivity threshold J0 = 104 m3/sec reported in [9] and
provide no unambiguous explanation to the absence of homogeneous nucleation in those experiments.

The formula derived in the present study takes into account the effect of viscosity on the rate of homogeneous
nucleation in decompressed water-saturated magma. With an appropriate correction, this formula can be used to
predict the effect of viscosity on the rate of heterogeneous nucleation. A comparison with experimental data confirms
that viscosity has a pronounced effect on the rate of homogeneous nucleation in magma.
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